Estimating genealogies from unlinked marker data:: A Bayesian approach
: Gasbarra, Dario; Pirinen, Matti; Sillanpaa, Mikko J.; Salmela, Elina; Arjas, Elja
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCE
: SAN DIEGO
: 2007
Theoretical Population Biology
THEORETICAL POPULATION BIOLOGY
: THEOR POPUL BIOL
: 72
: 3
: 305
: 322
: 18
: 0040-5809
: 1096-0325
DOI: https://doi.org/10.1016/j.tpb.2007.06.004
An issue often encountered in statistical genetics is whether, or to what extent, it is possible to estimate the degree to which individuals sampled from a background population are related to each other, on the basis of the available genotype data and some information on the demography of the population. In this article, we consider this question using explicit modelling of the pedigrees and gene flows at unlinked marker loci, but then restricting ourselves to a relatively recent history of the population, that is, considering the genealogy at most some tens of generations backwards in time. As a computational tool we use a Markov chain Monte Carlo numerical integration on the state space of genealogies of the sampled individuals. As illustrations of the method, we consider the question of relatedness at the level of genes/genomes (IBD estimation), using both simulated and real data. (C) 2007 Elsevier Inc. All rights reserved.