A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Self-assembled co-delivery system of gold nanoparticles and paclitaxel based on in-situ dynamic covalent chemistry for synergistic chemo-photothermal therapy




TekijätWu, Xiao-Xia; Zhang, Ding-Hu; Ding, Yi-Nan; Cao, Fei; Li, Yang; Yao, Jun-Lie; Miao, Xin-Yu; He, Lu-Lu; Luo, Jun; Li, Jian-Wei; Lin, Jie; Wu, Ai-Guo; Zheng, Jia-Ping

KustantajaSpringer Nature

KustannuspaikkaBEIJING

Julkaisuvuosi2025

JournalRare Metals

Tietokannassa oleva lehden nimiRARE METALS

Lehden akronyymiRARE METALS

Vuosikerta44

Aloitussivu417

Lopetussivu429

Sivujen määrä13

ISSN1001-0521

eISSN1867-7185

DOIhttps://doi.org/10.1007/s12598-024-03047-3


Tiivistelmä
Recently, stimuli-responsive nanocarriers capable of precision drug release have garnered significant attention in the field of drug delivery. Here, an in-situ dynamic covalent self-assembled (DCS) strategy was utilized to develop a co-delivery system. This assembly was based on a thiol-disulfide-exchange reaction, producing disulfide macrocycles in an oxidizing aerial environment. These macrocycles encapsulated the anti-cancer drug (paclitaxel, PTX) on the surface of gold nanoparticles, which served as photothermal therapy agents during the self-assembly. In the DCS process, the kinetic control over the concentration of each building unit within the reaction system led to the formation of a stable co-delivery nanosystem with optimal drug-loading efficiency. Notably, the high glutathione (GSH) concentrations in tumor cells caused the disulfide macrocycles in nanostructures to break, resulting in drug release. The stimuli-responsive performances of the prepared nanosystems were determined by observing the molecular structures and drug release. The results revealed that the self-assembled nanosystem exhibited GSH-triggered drug release and good photothermal conversion capability under near-infrared light. Moreover, the in vitro and in vivo results revealed that conjugating the targeting molecule of cRGD with co-delivery nanosystem enhanced its biocompatibility, chemo-photothermal anti-cancer effect. Overall, our findings indicated that in-situ DCS strategy enhanced the control over drug loading during the construction of the co-delivery system, paving a way for the development of more functional carriers in nanomedicine.(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(DCS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)-(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(G-NP)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)-(sic)(sic)(sic)(sic).(sic)DCS(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(GSH)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)GSH(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)cRGD(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic),(sic)(sic)(sic)(sic)(sic),(sic)(sic)-(sic)(sic)(sic)(sic)(sic)(sic)(sic).(sic)(sic), (sic)(sic)DCS(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).


Julkaisussa olevat rahoitustiedot
This work was financially supported by the National Natural Science Foundation of China (Nos. 82202274, 82072032, 22161016, 32025021, 12374390, 52002380 and 31971292), the National Science and Technology Major Project (No. 2023ZD0500902), the Fellowship of China Postdoctoral Science Foundation (No. 2023M743559), the Member of Youth Innovation Promotion Association Foundation of CAS, China (No. 2023310), the Key Scientific and Technological Special Project of Ningbo City (No. 2023Z209) and the Natural Science Foundation of Zhejiang Province (No. LQ23H180003).


Last updated on 2025-27-01 at 19:08