Mean first passage time of active Brownian particle in one dimension




Scacchi, A.; Sharma, A.

PublisherTAYLOR & FRANCIS LTD

ABINGDON

2018

Molecular Physics

MOLECULAR PHYSICS

MOL PHYS

116

4

460

464

5

0026-8976

1362-3028

DOIhttps://doi.org/10.1080/00268976.2017.1401743



We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modelled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate r on the mean first passage time to a fixed target of a single free active Brownian particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate r* for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.[GRAPHICS].



Last updated on 2025-27-01 at 20:01