A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Close-range hyperspectral spectroscopy reveals leaf water content dynamics
Tekijät: Junttila, S.; Hölttä, T.; Saarinen, N.; Kankare, V.; Yrttimaa, T.; Hyyppä, J.; Vastaranta, M.
Kustantaja: ELSEVIER SCIENCE INC
Kustannuspaikka: NEW YORK
Julkaisuvuosi: 2022
Journal: Remote Sensing of Environment
Tietokannassa oleva lehden nimi: REMOTE SENSING OF ENVIRONMENT
Lehden akronyymi: REMOTE SENS ENVIRON
Artikkelin numero: 113071
Vuosikerta: 277
Sivujen määrä: 13
ISSN: 0034-4257
eISSN: 1879-0704
DOI: https://doi.org/10.1016/j.rse.2022.113071
Tiivistelmä
Water plays a crucial role in maintaining plant functionality and drives many ecophysiological processes. The distribution of water resources is in a continuous change due to global warming affecting the productivity of ecosystems around the globe, but there is a lack of non-destructive methods capable of continuous monitoring of plant and leaf water content that would help us in understanding the consequences of the redistribution of water. We studied the utilization of novel small hyperspectral sensors in the 1350-1650 nm and 2000-2450 nm spectral ranges in non-destructive estimation of leaf water content in laboratory and field conditions. We found that the sensors captured up to 96% of the variation in equivalent water thickness (EWT, g/m(2)) and up to 90% of the variation in relative water content (RWC). Further tests were done with an indoor plant (Dracaena marginate Lem.) by continuously measuring leaf spectra while drought conditions developed, which revealed detailed diurnal dynamics of leaf water content. The laboratory findings were supported by field measurements, where repeated leaf spectra measurements were in fair agreement (R-2 = 0.70) with RWC and showed similar diurnal dynamics. The estimation of leaf mass per area (LMA) using leaf spectra was investigated as a pathway to improved RWC estimation, but no significant improvement was found. We conclude that close-range hyper spectral spectroscopy can provide a novel tool for continuous measurement of leaf water content at the single leaf level and help us to better understand plant responses to varying environmental conditions.
Water plays a crucial role in maintaining plant functionality and drives many ecophysiological processes. The distribution of water resources is in a continuous change due to global warming affecting the productivity of ecosystems around the globe, but there is a lack of non-destructive methods capable of continuous monitoring of plant and leaf water content that would help us in understanding the consequences of the redistribution of water. We studied the utilization of novel small hyperspectral sensors in the 1350-1650 nm and 2000-2450 nm spectral ranges in non-destructive estimation of leaf water content in laboratory and field conditions. We found that the sensors captured up to 96% of the variation in equivalent water thickness (EWT, g/m(2)) and up to 90% of the variation in relative water content (RWC). Further tests were done with an indoor plant (Dracaena marginate Lem.) by continuously measuring leaf spectra while drought conditions developed, which revealed detailed diurnal dynamics of leaf water content. The laboratory findings were supported by field measurements, where repeated leaf spectra measurements were in fair agreement (R-2 = 0.70) with RWC and showed similar diurnal dynamics. The estimation of leaf mass per area (LMA) using leaf spectra was investigated as a pathway to improved RWC estimation, but no significant improvement was found. We conclude that close-range hyper spectral spectroscopy can provide a novel tool for continuous measurement of leaf water content at the single leaf level and help us to better understand plant responses to varying environmental conditions.