Gait Estimation and Analysis from Noisy Observations




Hafsa Ismail, Ibrahim Radwan, Hanna Suominen, Roland Goecke

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

PublisherIEEE

2019

Annual International Conference of the IEEE Engineering in Medicine and Biology Society

2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference

Conf Proc IEEE Eng Med Biol Soc

2707

2712

978-1-5386-1312-2

978-1-5386-1311-5

1557-170X

1558-4615

DOIhttps://doi.org/10.1109/EMBC.2019.8857156



People's walking style - their gait - can be an indicator of their health as it is affected by pain, illness, weakness, and aging. Gait analysis aims to detect gait variations. It is usually performed by an experienced observer with the help of different devices, such as cameras, sensors, and/or force plates. Frequent gait analysis, to observe changes over time, is costly and impractical. This paper initiates an inexpensive gait analysis based on recorded video. Our methodology first discusses estimating gait movements from predicted 2D joint locations that represent selected body parts from videos. Then, using a long-short-term memory (LSTM) regression model to predict 3D (Vicon) data, which was recorded simultaneously with the videos as ground truth. Feet movements estimated from video are highly correlated with the Vicon data, enabling gait analysis by measuring selected spatial gait parameters (step and cadence length, and walk base) from estimated movements. Using inexpensive and reliable cameras to record, estimate and analyse a person's gait can be helpful; early detection of its changes facilitates early intervention.



Last updated on 2024-26-11 at 16:18