A1 Refereed original research article in a scientific journal
Microbial genomes retrieved from High Arctic lake sediments encode for adaptation to cold and oligotrophic environments
Authors: Ruuskanen M., Colby G., St.Pierre K., St.Louis V., Aris-Brosou S., Poulain A.
Publisher: Wiley Blackwell
Publication year: 2020
Journal: Limnology and Oceanography
Journal name in source: Limnology and Oceanography
Volume: 65
Issue: S1
First page : S233
Last page: S247
Number of pages: 15
ISSN: 1939-5590
DOI: https://doi.org/10.1002/lno.11334(external)
The Arctic is currently warming at an unprecedented rate, which may affect environmental constraints on the freshwater microbial communities found there. Yet, our knowledge of the community structure and functional potential of High Arctic freshwater microbes remains poor, even though they play key roles in nutrient cycling and other ecosystem services. Here, using high‐throughput metagenomic sequencing and genome assembly, we show that sediment microbial communities in the High Arctic's largest lake by volume, Lake Hazen, are phylogenetically diverse, ranging from Proteobacteria, Verrucomicrobia, Planctomycetes, to members of the newly discovered Candidate Phyla Radiation groups. These genomes displayed a high prevalence of pathways involved in lipid chemistry, and a low prevalence of nutrient uptake pathways, which might represent adaptations to the specific, cold (∼ 3.5°C) and extremely oligotrophic conditions in Lake Hazen. Despite these potential adaptations, it is unclear how ongoing environmental changes will affect microbial communities, the makeup of their genomic idiosyncrasies, as well as the possible implications at higher trophic levels.