Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)
Dimension Reduction for Time Series in a Blind Source Separation Context Using R
Julkaisun tekijät: Nordhausen Klaus, Matilainen Markus, Miettinen Jari, Virta Joni, Taskinen Sara
Kustantaja: American Statistical Association
Julkaisuvuosi: 2021
Journal: Journal of Statistical Software
Volyymi: 98
eISSN: 1548-7660
DOI: http://dx.doi.org/10.18637/jss.v098.i15
Verkko-osoite: https://www.jstatsoft.org/article/view/v098i15
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/44561561
Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.
Ladattava julkaisu This is an electronic reprint of the original article. |