A2 Vertaisarvioitu katsausartikkeli tieteellisessä lehdessä
Myocardial perfusion scintigraphy dosimetry: optimal use of SPECT and SPECT/CT technologies in stress-first imaging protocol
Tekijät: Lecchi M, Malaspina S, Scabbio C, Gaudieri V, Del Sole A
Julkaisuvuosi: 2016
Lehti:: Clinical and Translational Imaging
Tietokannassa oleva lehden nimi: Clinical and translational imaging
Lehden akronyymi: Clin Transl Imaging
Vuosikerta: 4
Numero: 6
Aloitussivu: 491
Lopetussivu: 498
Sivujen määrä: 8
ISSN: 2281-5872
DOI: https://doi.org/10.1007/s40336-016-0212-9
Tiivistelmä
Over the past decade, nuclear medicine experts have been seeking to minimize patient exposure to radiation in myocardial perfusion scintigraphy (MPS). This review describes the latest technological innovations in MPS, particularly with regard to dose reduction.\nWe searched in PubMed for original clinical papers in English, published after 2008, using the following research criteria: (dose) and ((reduction) or (reducing)) and ((myocardial) or (cardiac) or (heart)) and ((nuclear medicine) or (nuclear imaging) or (radionuclide) or (scintigraphy) or (SPET) or (SPECT)). Thereafter, recent reviews on the topic were considered and other relevant clinical papers were added to the results.\nOf 202 non-duplicate articles, 17 were included. To these, another eight papers cited in recent reviews were added. By optimizing the features of software, i.e., through algorithms for iterative reconstruction with resolution recovery (IRRs), and hardware, i.e., scanners and collimators, and by preferring, unless otherwise indicated, the use of stress-first imaging protocols, it has become possible to reduce the effective dose by at least 50% in stress/rest protocols, and by up to 89% in patients undergoing a diagnostic stress-only study with new technology. With today's SPECT/CT systems, the use of a stress-first protocol can conveniently be performed, resulting in an overall dose reduction of about 35% if two-thirds of stress-first examinations were considered definitively normal.\nUsing innovative gamma cameras, collimators and software, as well as, unless otherwise indicated, stress-first imaging protocols, it has become possible to reduce significantly the effective dose in a high percentage of patients, even when X-ray CT scanning is performed for attenuation correction.\nPURPOSE\nMETHODS\nRESULTS\nCONCLUSION
Over the past decade, nuclear medicine experts have been seeking to minimize patient exposure to radiation in myocardial perfusion scintigraphy (MPS). This review describes the latest technological innovations in MPS, particularly with regard to dose reduction.\nWe searched in PubMed for original clinical papers in English, published after 2008, using the following research criteria: (dose) and ((reduction) or (reducing)) and ((myocardial) or (cardiac) or (heart)) and ((nuclear medicine) or (nuclear imaging) or (radionuclide) or (scintigraphy) or (SPET) or (SPECT)). Thereafter, recent reviews on the topic were considered and other relevant clinical papers were added to the results.\nOf 202 non-duplicate articles, 17 were included. To these, another eight papers cited in recent reviews were added. By optimizing the features of software, i.e., through algorithms for iterative reconstruction with resolution recovery (IRRs), and hardware, i.e., scanners and collimators, and by preferring, unless otherwise indicated, the use of stress-first imaging protocols, it has become possible to reduce the effective dose by at least 50% in stress/rest protocols, and by up to 89% in patients undergoing a diagnostic stress-only study with new technology. With today's SPECT/CT systems, the use of a stress-first protocol can conveniently be performed, resulting in an overall dose reduction of about 35% if two-thirds of stress-first examinations were considered definitively normal.\nUsing innovative gamma cameras, collimators and software, as well as, unless otherwise indicated, stress-first imaging protocols, it has become possible to reduce significantly the effective dose in a high percentage of patients, even when X-ray CT scanning is performed for attenuation correction.\nPURPOSE\nMETHODS\nRESULTS\nCONCLUSION