A1 Refereed original research article in a scientific journal

Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching




AuthorsErmei Mäkilä, Anne-Mari Anton Willmore, Haibo Yu, Marianna Irri, Mark Aindow, Tambet Teesalu, Leigh T. Canham, Kurt W. Kolasinski, Jarno Salonen

PublisherAmerican Chemical Society

Publication year2019

JournalACS Nano

Journal acronymACS Nano

Volume13

Issue11

First page 13056

Last page13064

Number of pages9

ISSN1936-0851

DOIhttps://doi.org/10.1021/acsnano.9b05740


Abstract

Hierarchically nanostructured silicon was produced by regenerative electroless etching (ReEtching) of Si powder made from pulverized anodized porous silicon. This material is characterized by ∼15 nm mesopores, into the walls of which tortuous 2–4 nm pores have been introduced. The walls are sufficiently narrow that they support quantum-confined crystallites that are photoluminescent. With suitable parameters, the ReEtching process also provides control over the emission color of the photoluminescence. Ball milling and hydrosilylation of this powder with undecylenic acid produces nanoparticles with hydrodynamic diameter of ∼220 nm that exhibit robust and bright luminescence that can be excited with either one ultraviolet/visible photon or two near-infrared photons. The long-lived, robust visible photoluminescence of these chemically passivated porous silicon nanoparticles is well-suited for bioimaging and theranostic applications.



Last updated on 2024-26-11 at 16:17