A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

The Levenshtein's Channel and the List Size in Information Retrieval




TekijätVille Junnila, Tero Laihonen, Tuomo Lehtilä

Konferenssin vakiintunut nimiIEEE International Symposium on Information Theory

KustannuspaikkaNew York

Julkaisuvuosi2019

JournalIEEE International Symposium on Information Theory

Kokoomateoksen nimi2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)

Lehden akronyymiIEEE INT SYMP INFO

Sarjan nimiIEEE International Symposium on Information Theory

Aloitussivu295

Lopetussivu299

Sivujen määrä5

ISBN978-1-5386-9291-2

DOIhttps://doi.org/10.1109/ISIT.2019.8849616


Tiivistelmä
The Levenshtein's channel model for substitution errors is relevant in information retrieval where information is received through many noisy channels. In each of the channels there can occur at most t errors and the decoder tries to recover the information with the aid of the channel outputs. Recently, Yaakobi and Bruck considered the problem where the decoder provides a list instead of a unique output. If the underlying code C subset of F-2(n) has error-correcting capability e, we write t = e vertical bar l, (l >= 1). In this paper, we provide new bounds on the size of the list. In particular, we give using the Sauer-Shelah lemma the upper bound l + 1 on the list size for large enough n provided that we have a sufficient number of channels. We also show that the bound l + 1 is the best possible.



Last updated on 2024-26-11 at 16:33