A3 Vertaisarvioitu kirjan tai muun kokoomateoksen osa

Matrix and Tensor Factorization Methods for Toxicogenomic Modeling and Prediction




TekijätSuleiman A. Khan, Tero Aittokallio, Andreas Scherer, Roland Grafström, Pekka Kohonen

ToimittajaHuixiao Hong

KustantajaSpringer

Julkaisuvuosi2019

Kokoomateoksen nimiAdvances in Computational Toxicology

Tietokannassa oleva lehden nimiChallenges and Advances in Computational Chemistry and Physics

Sarjan nimiChallenges and Advances in Computational Chemistry and Physics

Vuosikerta30

Aloitussivu57

Lopetussivu74

Sivujen määrä18

ISBN978-3-030-16442-3

eISBN978-3-030-16443-0

DOIhttps://doi.org/10.1007/978-3-030-16443-0_4


Tiivistelmä

Prediction
of unexpected, toxic effects of compounds is a key challenge in
computational toxicology. Machine learning-based toxicogenomic modeling
opens up a systematic means for genomics-driven prediction of toxicity,
which has the potential also to unravel novel mechanistic processes that
can help to identify underlying links between the molecular makeup of
the cells and their toxicological outcomes. This chapter describes the
recent big data and machine learning-driven computational methods and
tools that enable one to address these key challenges in computational
toxicogenomics, with a particular focus on matrix and tensor
factorization approaches. Here we describe these approaches by using
exemplary application of a data set comprising over 2.5 × 108
data points and 1300 compounds, with the aim of explaining
dose-dependent cytotoxic effects by identifying hidden factors/patterns
captured in transcriptomics data with links to structural fingerprints
of the compounds. Together transcriptomics and structural data are able
to predict pathological states in liver and drug toxicity.

KeywordsMachine learning Group factor analysis Tensor factorization Bayesian modeling Drug sensitivity Connectivity Map NCI-60 Gene expression Biomarkers



Last updated on 2024-26-11 at 20:14