A1 Refereed original research article in a scientific journal
Characterization of osteogenic cells grown over modified graphene-oxide-biostable polymers
Authors: Mirza EH, Khan AA, Al-Khureif AA, Saadaldin SA, Mohamed BA, Fareedi F, Khan MM, Alfayez M, Al-Fotawi R, Vallittu PK, Mahmood A
Publisher: IOP PUBLISHING LTD
Publication year: 2019
Journal: Biomedical Materials
Journal name in source: BIOMEDICAL MATERIALS
Journal acronym: BIOMED MATER
Article number: ARTN 065004
Volume: 14
Issue: 6
Number of pages: 10
ISSN: 1748-6041
DOI: https://doi.org/10.1088/1748-605X/ab3ab2
Abstract
Graphene is an excellent filler for the development of reinforced composites. This study evaluated bone cement composites of graphene oxide (GO) and poly(methyl methacrylate) (PMMA) based on the proliferation of human bone marrow mesenchymal stem cells (hBMSCs), and the anabolic and catabolic effects of the incorporation of GO on osteoblast cells at a genetic level. Surface wettability and roughness were also evaluated at different GO concentrations (GO1: 0.024 wt% and GO2: 0.048 wt%) in the polymer matrix. Fabricated specimens were tested to (a) observe cell proliferation and (b) identify the effectiveness of GO on the expression of bone morphogenic proteins. Early osteogenesis was observed based on the activity of alkaline phosphatase and the genetic expression of the run-related transcription factor 2. Moreover, bone strengthening was determined by examining the collagen type 1 alpha-1 gene. The surface roughness of the substrate material increased following the addition ofGOfillers to the resin matrix. It was found that over a period of ten days, the proliferation of hBMSCs on GO2 was significantly higher compared to the control and GO1. Additionally, quantitative colorimetric mineralization of the extracellular matrix revealed greater calcium phosphate deposition by osteoblasts in GO2. Furthermore, alizarin red staining analysis at day 14 identified the presence of mineralization in the form of dark pigmentation in the central region of GO2. The modified GO-PMMA composite seems to be promising as a bone cement type for the enhancement of the biological activity of bone tissue.
Graphene is an excellent filler for the development of reinforced composites. This study evaluated bone cement composites of graphene oxide (GO) and poly(methyl methacrylate) (PMMA) based on the proliferation of human bone marrow mesenchymal stem cells (hBMSCs), and the anabolic and catabolic effects of the incorporation of GO on osteoblast cells at a genetic level. Surface wettability and roughness were also evaluated at different GO concentrations (GO1: 0.024 wt% and GO2: 0.048 wt%) in the polymer matrix. Fabricated specimens were tested to (a) observe cell proliferation and (b) identify the effectiveness of GO on the expression of bone morphogenic proteins. Early osteogenesis was observed based on the activity of alkaline phosphatase and the genetic expression of the run-related transcription factor 2. Moreover, bone strengthening was determined by examining the collagen type 1 alpha-1 gene. The surface roughness of the substrate material increased following the addition ofGOfillers to the resin matrix. It was found that over a period of ten days, the proliferation of hBMSCs on GO2 was significantly higher compared to the control and GO1. Additionally, quantitative colorimetric mineralization of the extracellular matrix revealed greater calcium phosphate deposition by osteoblasts in GO2. Furthermore, alizarin red staining analysis at day 14 identified the presence of mineralization in the form of dark pigmentation in the central region of GO2. The modified GO-PMMA composite seems to be promising as a bone cement type for the enhancement of the biological activity of bone tissue.