A1 Refereed original research article in a scientific journal

Predator coevolution and prey trait variability determine species coexistence




AuthorsScheued T, Cairns J, Becks L, Hiltunen T

PublisherROYAL SOC

Publication year2019

JournalProceedings of the Royal Society B: Biological Sciences

Journal name in sourcePROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES

Journal acronymP ROY SOC B-BIOL SCI

Article numberARTN 20190245

Volume286

Issue1902

Number of pages9

ISSN0962-8452

eISSN1471-2954

DOIhttps://doi.org/10.1098/rspb.2019.0245


Abstract
Predation is one of the key ecological mechanisms allowing species coexisence and influencing biological diversity. However, ecological processes are subject to contemporary evolutionary change, and the degree to which predation affects diversity ultimately depends on the interplay between evolution and ecology. Furthermore, ecological interactions that influence species coexistence can be altered by reciprocal coevolution especially in the case of antagonistic interactions such as predation or parasitism. Here we used an experimental evolution approach to test for the role of initial trait variation in the prey population and coevolutionary hisory of the predator in the ecological dynamics of a two-species bacterial community predated by a ciliate. We found that initial trait variation both at the bacterial and ciliate level enhanced species coexistence, and that subsequent trait evolutionary trajectories depended on the initial genetic diversity present in the population. Our findings provide further support to the notion that the ecology-centric view of diversity maintenance must be reinvestigated in light of recent findings in the field of eco-evolutionary dynamics.



Last updated on 2024-26-11 at 16:45