A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On pointwise periodicity in tilings, cellular automata, and subshifts
Tekijät: Meyerovitch T, Salo V
Kustantaja: EUROPEAN MATHEMATICAL SOC
Julkaisuvuosi: 2019
Journal: Groups, Geometry, and Dynamics
Tietokannassa oleva lehden nimi: GROUPS GEOMETRY AND DYNAMICS
Lehden akronyymi: GROUP GEOM DYNAM
Vuosikerta: 13
Numero: 2
Aloitussivu: 549
Lopetussivu: 578
Sivujen määrä: 30
ISSN: 1661-7207
eISSN: 1661-7215
DOI: https://doi.org/10.4171/GGD/497(external)
Tiivistelmä
We study implications of expansiveness and pointwise periodicity for certain groups and semigroups of transformations. Among other things we prove that every pointwise periodic finitely generated group of cellular automata is necessarily finite. We also prove that a subshift over any finitely generated group that consists of finite orbits is finite, and related results for tilings of Euclidean space.
We study implications of expansiveness and pointwise periodicity for certain groups and semigroups of transformations. Among other things we prove that every pointwise periodic finitely generated group of cellular automata is necessarily finite. We also prove that a subshift over any finitely generated group that consists of finite orbits is finite, and related results for tilings of Euclidean space.