A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Calderon-Zygmund estimates in generalized Orlicz spaces
Tekijät: Peter Hästö, Jihoon Ok
Kustantaja: ACADEMIC PRESS INC ELSEVIER SCIENCE
Julkaisuvuosi: 2019
Journal: Journal of Differential Equations
Tietokannassa oleva lehden nimi: JOURNAL OF DIFFERENTIAL EQUATIONS
Lehden akronyymi: J DIFFER EQUATIONS
Vuosikerta: 267
Numero: 5
Aloitussivu: 2792
Lopetussivu: 2823
Sivujen määrä: 32
ISSN: 0022-0396
DOI: https://doi.org/10.1016/j.jde.2019.03.026
Tiivistelmä
We establish the W-2,W-phi(.)-solvability of the linear elliptic equations in non-divergence form under a suitable, essentially minimal, condition of the generalized Orlicz function phi(.) = phi(x, t), by deriving Calderon-Zygmund type estimates. The class of generalized Orlicz spaces we consider here contains as special cases classical Lebesgue and Orlicz spaces, as well as non-standard growth cases like variable exponent and double phase growth. (C) 2019 Elsevier Inc. All rights reserved.
We establish the W-2,W-phi(.)-solvability of the linear elliptic equations in non-divergence form under a suitable, essentially minimal, condition of the generalized Orlicz function phi(.) = phi(x, t), by deriving Calderon-Zygmund type estimates. The class of generalized Orlicz spaces we consider here contains as special cases classical Lebesgue and Orlicz spaces, as well as non-standard growth cases like variable exponent and double phase growth. (C) 2019 Elsevier Inc. All rights reserved.