A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Autoimmunity, hypogammaglobulinemia, lymphoproliferation and mycobacterial disease in patients with dominant activating mutations in STAT3




TekijätHaapaniemi EM, Kaustio M, Rajala HL, van Adrichem AJ, Kainulainen L, Glumoff V, Doffinger R, Kuusanmäki H, Heiskanen-Kosma T, Trotta L, Chiang S, Kulmala P, Eldfors S, Katainen R, Siitonen S, Karjalainen-Lindsberg ML, Kovanen PE, Otonkoski T, Porkka K, Heiskanen K, Hänninen A, Bryceson YT, Uusitalo-Seppälä R, Saarela J, Seppänen M, Mustjoki S, Kere J

KustantajaAmerican Society of Hematologists

Julkaisuvuosi2015

JournalBlood

Vuosikerta125

Numero4

Aloitussivu639

Lopetussivu648

Sivujen määrä10

ISSN0006-4971

DOIhttps://doi.org/10.1182/blood-2014-04-570101


Tiivistelmä

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of IPEX-like syndrome. Here, we immunologically characterized three patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T and p.K658N, respectively). The patients displayed multi-organ autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4-CD8-) T cells, and decreased NK, Th17, and regulatory T cell numbers. Notably, the patient harboring the K392R mutation developed T cell LGL leukemia at age 14. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.



Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:44