A1 Refereed original research article in a scientific journal

Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption




AuthorsChang-Fang Wang, Ermei M. Mäkilä, Colin Bonduelle, Jussi Rytkönen, Janne Raula, Sérgio Almeida, Ale Närvänen, Jarno J. Salonen, Sebastien Lecommandou, Jouni T. Hirvonen, Hélder A. Santos

PublisherAMER CHEMICAL SOC

Publication year2015

JournalACS Applied Materials and Interfaces

Journal name in sourceACS APPLIED MATERIALS & INTERFACES

Journal acronymACS APPL MATER INTER

Volume7

Issue3

First page 2006

Last page2015

Number of pages10

ISSN1944-8244

DOIhttps://doi.org/10.1021/am507827n


Abstract

Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.




Last updated on 2024-26-11 at 10:33