A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
From infinite to finite by identifying variables in many-valued logic
Tekijät: Salomaa Arto
Kustantaja: Institut fur Informatik, Justus-Liebig-Universitat Giessen
Julkaisuvuosi: 2018
Journal: Journal of Automata, Languages and Combinatorics
Tietokannassa oleva lehden nimi: Journal of Automata, Languages and Combinatorics
Vuosikerta: 23
Aloitussivu: 293
Lopetussivu: 301
The paper investigates compositions of many-valued truth-functions. There are specific n-valued truth-functions f, customarily referred to as Sheffer functions such that any n-valued truth-function of an arbitrary number of variables can be expressed as a composition of f. Moreover, there are infinitely many bases for the set of all n-valued truth-functions. However, the number of bases is finite if attention is restricted to bases where no variable identification is possible.