A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra




TekijätVehkalahti R, Lu HF, Luzzi L

KustantajaIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Julkaisuvuosi2013

JournalIEEE Transactions on Information Theory

Tietokannassa oleva lehden nimiIEEE TRANSACTIONS ON INFORMATION THEORY

Lehden akronyymiIEEE T INFORM THEORY

Numero sarjassa9

Vuosikerta59

Numero9

Aloitussivu6060

Lopetussivu6082

Sivujen määrä23

ISSN0018-9448

DOIhttps://doi.org/10.1109/TIT.2013.2266396


Tiivistelmä
This work considers inverse determinant sums, which arise from the union bound on the error probability, as a tool for designing and analyzing algebraic space-time block codes. A general framework to study these sums is established, and the connection between asymptotic growth of inverse determinant sums and the diversity-multiplexing gain tradeoff is investigated. It is proven that the growth of the inverse determinant sum of a division algebra-based space-time code is completely determined by the growth of the unit group. This reduces the inverse determinant sum analysis to studying certain asymptotic integrals in Lie groups. Using recent methods from ergodic theory, a complete classification of the inverse determinant sums of the most well-known algebraic space-time codes is provided. The approach reveals an interesting and tight relation between diversity-multiplexing gain tradeoff and point counting in Lie groups.



Last updated on 2024-26-11 at 21:37