A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Novel techniques and an efficient algorithm for closed pattern mining




TekijätAndrás Király, Asta Laiho, János Abonyi, Attila Gyenesei

KustantajaPERGAMON-ELSEVIER SCIENCE LTD

KustannuspaikkaOXFORD; THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

Julkaisuvuosi2014

JournalExpert Systems with Applications

Tietokannassa oleva lehden nimiExpert Systems with Applications

Lehden akronyymiExpert Syst.Appl.

Vuosikerta41

Numero11

Aloitussivu5105

Lopetussivu5114

Sivujen määrä10

ISSN0957-4174

DOIhttps://doi.org/10.1016/j.eswa.2014.02.029


Tiivistelmä

In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0-1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets. (c) 2014 Elsevier Ltd. All rights reserved.




Last updated on 2024-26-11 at 19:42