A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
A characterization of periodicity of bi-infinite words
Tekijät: Harju T, Lepisto A, Nowotka D
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 2005
Lehti:: Theoretical Computer Science
Tietokannassa oleva lehden nimi: THEORETICAL COMPUTER SCIENCE
Lehden akronyymi: THEOR COMPUT SCI
Vuosikerta: 347
Numero: 1-2
Aloitussivu: 419
Lopetussivu: 422
Sivujen määrä: 4
ISSN: 0304-3975
DOI: https://doi.org/10.1016/j.tcs.2004.08.017
Tiivistelmä
A finite word is called bordered if it has a proper prefix which is also a suffix of that word. Costa proves in [Theoret. Comput. Sci. 290(3) (2003) 2053-2061] that a bi-infinite word w is of the form (omega)fgf(omega), for some finite words f and g, if, and only if, there is a factorization w = suv, with u epsilon A* such that every factor s'uv', with s' <= s and v' <= v, is bordered. We present a shorter proof of that result in this paper. (c) 2005 Elsevier B.V. All rights reserved.
A finite word is called bordered if it has a proper prefix which is also a suffix of that word. Costa proves in [Theoret. Comput. Sci. 290(3) (2003) 2053-2061] that a bi-infinite word w is of the form (omega)fgf(omega), for some finite words f and g, if, and only if, there is a factorization w = suv, with u epsilon A* such that every factor s'uv', with s' <= s and v' <= v, is bordered. We present a shorter proof of that result in this paper. (c) 2005 Elsevier B.V. All rights reserved.