A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Function-valued adaptive dynamics and the calculus of variations




TekijätParvinen K, Dieckmann U, Heino M

KustantajaSPRINGER

Julkaisuvuosi2006

JournalJournal of Mathematical Biology

Tietokannassa oleva lehden nimiJOURNAL OF MATHEMATICAL BIOLOGY

Lehden akronyymiJ MATH BIOL

Vuosikerta52

Numero1

Aloitussivu1

Lopetussivu26

Sivujen määrä26

ISSN0303-6812

DOIhttps://doi.org/10.1007/s00285-005-0329-3


Tiivistelmä
Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples.



Last updated on 2024-26-11 at 14:45