A1 Refereed original research article in a scientific journal

Transient 100 nM dexamethasone treatment reduces inter- and intraindividual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells




AuthorsAlm JJ, Heino TJ, Hentunen TA, Väänänen HK, Aro HT

Publication year2012

JournalTissue Engineering Part C Methods

Number in series9

Volume18

Issue9

First page 658

Last page666

Number of pages9

ISSN1937-3384

DOIhttps://doi.org/10.1089/ten.TEC.2011.0675


Abstract
The development of in vitro culturing techniques for osteoblastic differentiation of human mesenchymal stem cells (hMSC) is important for cell biology research and the development of tissue-engineering applications. Dexamethasone (Dex) is a commonly used supplement, but the optimal use of Dex treatment is still unclear. By adjusting the timing of Dex supplementation, the negative effects of long-term Dex treatment could be overcome. Transient Dex treatment could contribute toward minimizing broad donor variation, which is a major challenge. We compared the two most widely used Dex concentrations of 10 and 100 nM as transient or continuous treatment and studied inter- and intraindividual variations in osteoblastic differentiation of hMSC. Characterized bone marrow-derived hMSC from 17 female donors of different age groups were used. During osteoblastic induction, the cells were treated with 10 or 100 nM Dex either transiently for different time periods or continuously. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Cell proliferation, cell viability, and apoptosis were also monitored. The strongest osteoblastic differentiation was observed when 100 nM Dex was present for the first week. In terms of inter- and intraindividual coefficients of variations, transient treatment with 100 nM Dex was superior to the other culture conditions and showed the lowest variations in all age groups. This study demonstrates that the temporary presence of 100 nM Dex during the first week of induction culture promotes hMSC osteoblastic differentiation and reduces inter- and intraindividual variations. With this protocol, we can reproducibly produce functional osteoblasts in vitro from the hMSC of different donor populations.



Last updated on 2024-26-11 at 22:04