A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Topology Inspired Problems for Cellular Automata, and a Counterexample in Topology




TekijätVille Salo, Ilkka Törmä

ToimittajaEnrico Formenti

Julkaisuvuosi2012

JournalElectronic Proceedings in Theoretical Computer Science

Kokoomateoksen nimiProceedings 18th international workshop on Cellular Automata and Discrete Complex Systems and 3rd international symposium Journées Automates Cellulaires

Artikkelin numero5

Sarjan nimiElectronic Proceedings in Theoretical Computer Science

Vuosikerta9

Aloitussivu53

Lopetussivu68

Sivujen määrä16

ISSN2075-2180

DOIhttps://doi.org/10.4204/EPTCS.90.5


Tiivistelmä
We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the
sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:34