A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Distribution of genetic variation in the growth hormone 1 gene in Atlantic salmon (Salmo salar) populations from Europe and North America
Tekijät: Ryynanen HJ, Primmer CR
Kustantaja: BLACKWELL PUBLISHING LTD
Julkaisuvuosi: 2004
Tietokannassa oleva lehden nimi: MOLECULAR ECOLOGY
Lehden akronyymi: MOL ECOL
Vuosikerta: 13
Numero: 12
Aloitussivu: 3857
Lopetussivu: 3869
Sivujen määrä: 13
ISSN: 0962-1083
DOI: https://doi.org/10.1111/j.1365-294X.2004.02370.x
Tiivistelmä
The level and hierarchical distribution of genetic variation in complete sequences of the Atlantic salmon (Salmo salar) growth hormone (GH1) gene were investigated in populations from Europe and North America with a view to inferring the major evolutionary forces affecting genetic variation at this locus. Seventeen polymorphic sites were identified in complete sequences from nine populations, with levels of noncoding (intron and untranslated region sequences) nucleotide diversity being similar to those observed in other species. No variation, however, was observed in exonic sequences, indicating that nucleotide diversity in the Atlantic salmon GH1 gene is three and 25 times less than that estimated for human and Drosophila coding sequences, respectively. This suggests that purifying selection is the predominant contemporary force controlling the molecular evolution of GH1 coding sequences. Comparison of haplotype relationships within and between populations indicated that differentiation between populations from Europe and North America was greater than within-continent comparisons. However, several haplotypes observed in the northernmost European populations were more similar to those observed in North American than to any other haplotypes observed in Europe. This is most likely to be a result of historical, rather than contemporary, gene flow. Neutrality test statistics, such as Tajima's D, were significantly positive in the European populations in which North American-like haplotypes were observed. Although a positive Tajima's D is commonly interpreted as the signal of balancing selection, a more likely explanation in this case is that either historical migration or ascertainment bias, rather than within population local adaptation, has given rise to an excess of intermediate frequency alleles.
The level and hierarchical distribution of genetic variation in complete sequences of the Atlantic salmon (Salmo salar) growth hormone (GH1) gene were investigated in populations from Europe and North America with a view to inferring the major evolutionary forces affecting genetic variation at this locus. Seventeen polymorphic sites were identified in complete sequences from nine populations, with levels of noncoding (intron and untranslated region sequences) nucleotide diversity being similar to those observed in other species. No variation, however, was observed in exonic sequences, indicating that nucleotide diversity in the Atlantic salmon GH1 gene is three and 25 times less than that estimated for human and Drosophila coding sequences, respectively. This suggests that purifying selection is the predominant contemporary force controlling the molecular evolution of GH1 coding sequences. Comparison of haplotype relationships within and between populations indicated that differentiation between populations from Europe and North America was greater than within-continent comparisons. However, several haplotypes observed in the northernmost European populations were more similar to those observed in North American than to any other haplotypes observed in Europe. This is most likely to be a result of historical, rather than contemporary, gene flow. Neutrality test statistics, such as Tajima's D, were significantly positive in the European populations in which North American-like haplotypes were observed. Although a positive Tajima's D is commonly interpreted as the signal of balancing selection, a more likely explanation in this case is that either historical migration or ascertainment bias, rather than within population local adaptation, has given rise to an excess of intermediate frequency alleles.