A1 Refereed original research article in a scientific journal
DISCOVERY OF POLARIZED EMISSION FROM TWO SOFT X-RAY-EMITTING INTERMEDIATE POLARS: UU Col AND NY Lup
Authors: Katajainen S, Butters O, Norton AJ, Lehto HJ, Piirola V, Berdyugin A
Publisher: IOP PUBLISHING LTD
Publication year: 2010
Journal: Astrophysical Journal
Journal name in source: ASTROPHYSICAL JOURNAL
Journal acronym: ASTROPHYS J
Number in series: 1
Volume: 724
Issue: 1
First page : 165
Last page: 170
Number of pages: 6
ISSN: 0004-637X
DOI: https://doi.org/10.1088/0004-637X/724/1/165(external)
Abstract
We aim to investigate the magnetic field strengths and cyclotron emission of the two soft X-ray-emitting intermediate polars (IPs) UU Col and NY Lup. We study the connection between polars and soft X-ray-emitting IPs by searching for evidence of circularly polarized light in these two systems, which may be examples of progenitors of polars. We carried out photopolarimetric observations of our targets using the Very Large Telescope (UT2) and FORS1 at Paranal. Imaging polarimetry with good signal-to-noise and relatively high time resolution is possible for these targets using such a large telescope. Detection of circular polarization, modulated according to a white dwarf (WD) spin period, is clear evidence of cyclotron emission processes near the WD surface. The color dependence of the polarization allows us to make estimates of the magnetic field strength. We found that both UU Col and NY Lup emit circularly polarized light in the B and I bands, modulated at the spin period of the WD in each case. We add further confirmation to the idea that soft X-ray-emitting IPs emit circularly polarized light and that cyclotron emission plays an important role in these systems. This also suggests that some soft X-ray-emitting IPs might be progenitors of polars.
We aim to investigate the magnetic field strengths and cyclotron emission of the two soft X-ray-emitting intermediate polars (IPs) UU Col and NY Lup. We study the connection between polars and soft X-ray-emitting IPs by searching for evidence of circularly polarized light in these two systems, which may be examples of progenitors of polars. We carried out photopolarimetric observations of our targets using the Very Large Telescope (UT2) and FORS1 at Paranal. Imaging polarimetry with good signal-to-noise and relatively high time resolution is possible for these targets using such a large telescope. Detection of circular polarization, modulated according to a white dwarf (WD) spin period, is clear evidence of cyclotron emission processes near the WD surface. The color dependence of the polarization allows us to make estimates of the magnetic field strength. We found that both UU Col and NY Lup emit circularly polarized light in the B and I bands, modulated at the spin period of the WD in each case. We add further confirmation to the idea that soft X-ray-emitting IPs emit circularly polarized light and that cyclotron emission plays an important role in these systems. This also suggests that some soft X-ray-emitting IPs might be progenitors of polars.