A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Robustifying principal component analysis with spatial sign vectors




TekijätTaskinen S, Koch I, Oja H

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2012

JournalStatistics and Probability Letters

Tietokannassa oleva lehden nimiSTATISTICS & PROBABILITY LETTERS

Lehden akronyymiSTAT PROBABIL LETT

Vuosikerta82

Numero4

Aloitussivu765

Lopetussivu774

Sivujen määrä10

ISSN0167-7152

DOIhttps://doi.org/10.1016/j.spl.2012.01.001


Tiivistelmä
In this paper, we apply orthogonally equivariant spatial sign covariance matrices as well as their affine equivariant counterparts in principal component analysis. The influence functions and asymptotic covariance matrices of eigenvectors based on robust covariance estimators are derived in order to compare the robustness and efficiency properties. We show in particular that the estimators that use pairwise differences of the observed data have very good efficiency properties, providing practical robust alternatives to classical sample covariance matrix based methods. (C) 2012 Elsevier B.V. All rights reserved.



Last updated on 2024-26-11 at 18:33