A1 Refereed original research article in a scientific journal
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses
Authors: Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E
Publisher: PORTLAND PRESS LTD
Publication year: 2008
Journal: Biochemical Journal
Journal name in source: BIOCHEMICAL JOURNAL
Journal acronym: BIOCHEM J
Volume: 412
First page : 275
Last page: 285
Number of pages: 11
ISSN: 0264-6021
DOI: https://doi.org/10.1042/BJ20080030
Abstract
Photosynthetic light reactions comprise a significant source of hydrogen peroxide (H2O2) in illuminated leaves. APXs (ascorbate peroxidases) reduce H2O2 to water and play an important role in the antioxidant system of plants. In the present study we addressed the significance of chloroplast APXs in stress tolerance and signalling in Arabidopsis thaliana. To this end, T-DNA (transfer DNA) insertion mutants tapx, sapx and tapx sapx, lacking the tAPX (thylakoid-bound APX), sAPX (stromal APX) or both respectively, were characterized. Photo-oxidative stress during germination led to bleaching of chloroplasts in sapx single-mutant and particularly in the tapx sapx double-mutant plants, whereas the greening process of wild-type and tapx plants was only partially impaired. Mature leaves of tapx sapx double mutants were also susceptible to short-term photo-oxidative stress induced by high light or methyl viologen treatments. After a 2-week acclimation period under high light or under low temperature, none of the mutants exhibited enhanced stress symptoms. Immunoblot analysis revealed that high-light-stress-acclimated tapx sapx double mutants compensated for the absence of tAPX and sAPX by increasing the level of 2-cysteine peroxiredoxin. Furthermore, the absence of tAPX and sAPX induced alterations in the transcriptomic profile of tapx sapx double-mutant plants already under quite optimal growth conditions. We conclude that sAPX is particularly important for photoprotection during the early greening process. In mature leaves, tAPX and sAPX are functionally redundant, and crucial upon sudden onset of oxidative stress. Moreover, chloroplast APXs contribute to chloroplast retrograde signalling pathways upon slight fluctuations in the accumulation of H2O2 in chloroplasts.
Photosynthetic light reactions comprise a significant source of hydrogen peroxide (H2O2) in illuminated leaves. APXs (ascorbate peroxidases) reduce H2O2 to water and play an important role in the antioxidant system of plants. In the present study we addressed the significance of chloroplast APXs in stress tolerance and signalling in Arabidopsis thaliana. To this end, T-DNA (transfer DNA) insertion mutants tapx, sapx and tapx sapx, lacking the tAPX (thylakoid-bound APX), sAPX (stromal APX) or both respectively, were characterized. Photo-oxidative stress during germination led to bleaching of chloroplasts in sapx single-mutant and particularly in the tapx sapx double-mutant plants, whereas the greening process of wild-type and tapx plants was only partially impaired. Mature leaves of tapx sapx double mutants were also susceptible to short-term photo-oxidative stress induced by high light or methyl viologen treatments. After a 2-week acclimation period under high light or under low temperature, none of the mutants exhibited enhanced stress symptoms. Immunoblot analysis revealed that high-light-stress-acclimated tapx sapx double mutants compensated for the absence of tAPX and sAPX by increasing the level of 2-cysteine peroxiredoxin. Furthermore, the absence of tAPX and sAPX induced alterations in the transcriptomic profile of tapx sapx double-mutant plants already under quite optimal growth conditions. We conclude that sAPX is particularly important for photoprotection during the early greening process. In mature leaves, tAPX and sAPX are functionally redundant, and crucial upon sudden onset of oxidative stress. Moreover, chloroplast APXs contribute to chloroplast retrograde signalling pathways upon slight fluctuations in the accumulation of H2O2 in chloroplasts.