A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Female reproductive cycle and sexual conflict over precopulatory mate-guarding in Thermosphaeroma (Crustacea, Isopoda)
Tekijät: Jormalainen V, Shuster SM
Kustantaja: BLACKWELL WISSENSCHAFTS-VERLAG GMBH
Julkaisuvuosi: 1999
Journal: Ethology
Tietokannassa oleva lehden nimi: ETHOLOGY
Lehden akronyymi: ETHOLOGY
Vuosikerta: 105
Numero: 3
Aloitussivu: 233
Lopetussivu: 246
Sivujen määrä: 14
ISSN: 0179-1613
DOI: https://doi.org/10.1046/j.1439-0310.1999.00386.x
Tiivistelmä
In species with time-limited opportunities for insemination, precopulatory mate-guarding is expected to coevolve with the duration of female reproductive cycles. Despite this adaptation to female characteristics, it may also be advantageous for males to adjust the duration of guarding with respect to sex ratio because the benefits of guarding are dependent on the availability of females. If female fitness is reduced because of guarding, male guarding behavior leads to intersexual conflict. We studied these aspects of male mate-guarding behavior in two closely related, thermal-spring isopods (Thermosphaeroma). First, guarding duration showed species specificity which was related to the duration of reproductive cycle; cycle length for females and duration of guarding by males in T. milleri were twice as long as in T. thermophilum. Second, males in both species adjusted their guarding duration with sex ratio, guarding longer when a competing male was present. Third, in T. thermophilum, ovarian development began immediately after the birth of the previous brood and continued through guarding, sexual molt and post-molt periods until oviposition, whereas in T. miller i, ovarian development was largely postponed until the post-molt period. Because guarding during ovary provisioning periods may be costly for females, we tested the existence of intersexual conflict over guarding duration in T. thermophilum. We compared the duration of guarding of control pairs with those of pairs in which either male guarding ability or female ability to resist guarding was reduced experimentally. Guarding durations for manipulated and control males were equal, but manipulated females were guarded longer, suggesting that conflict exists and that females can effectively shorten guarding duration by their behavior. Moreover, we suggest that selection in the context of intersexual conflict may play an important role in the evolution of delayed oviposition and sperm-storage organs in mate-guarding crustaceans.
In species with time-limited opportunities for insemination, precopulatory mate-guarding is expected to coevolve with the duration of female reproductive cycles. Despite this adaptation to female characteristics, it may also be advantageous for males to adjust the duration of guarding with respect to sex ratio because the benefits of guarding are dependent on the availability of females. If female fitness is reduced because of guarding, male guarding behavior leads to intersexual conflict. We studied these aspects of male mate-guarding behavior in two closely related, thermal-spring isopods (Thermosphaeroma). First, guarding duration showed species specificity which was related to the duration of reproductive cycle; cycle length for females and duration of guarding by males in T. milleri were twice as long as in T. thermophilum. Second, males in both species adjusted their guarding duration with sex ratio, guarding longer when a competing male was present. Third, in T. thermophilum, ovarian development began immediately after the birth of the previous brood and continued through guarding, sexual molt and post-molt periods until oviposition, whereas in T. miller i, ovarian development was largely postponed until the post-molt period. Because guarding during ovary provisioning periods may be costly for females, we tested the existence of intersexual conflict over guarding duration in T. thermophilum. We compared the duration of guarding of control pairs with those of pairs in which either male guarding ability or female ability to resist guarding was reduced experimentally. Guarding durations for manipulated and control males were equal, but manipulated females were guarded longer, suggesting that conflict exists and that females can effectively shorten guarding duration by their behavior. Moreover, we suggest that selection in the context of intersexual conflict may play an important role in the evolution of delayed oviposition and sperm-storage organs in mate-guarding crustaceans.