A1 Refereed original research article in a scientific journal
Do mitochondrial mutations cause recurrent miscarriage?
Authors: Kaare M, Götz A, Ulander VM, Ariansen S, Kaaja R, Suomalainen A, Aittomäki K
Publication year: 2009
Journal: Molecular Human Reproduction
Journal name in source: Molecular human reproduction
Journal acronym: Mol Hum Reprod
Volume: 15
Issue: 5
First page : 295
Last page: 300
Number of pages: 6
ISSN: 1360-9947
eISSN: 1460-2407
DOI: https://doi.org/10.1093/molehr/gap021
Abstract
The cause of recurrent miscarriage (RM) can be identified in approximately 50% of cases, whereas in others, unknown genetic factors are actively being sought. As mitochondrial functions, and therefore also the mitochondrial genome [mitochondrial DNA (mtDNA)], have an important role in human development, through ATP production and participation in apoptosis, we aimed to study the role of mtDNA variations in RM. We screened 48 women with RM and 48 age-matched control women for heteroplasmic mitochondrial mutations using denaturing high performance liquid chromatography, a sensitive method that can detect approximately 5% heteroplasmy. As a result, we detected a heteroplasmic mtDNA variation in 13 RM women (27%) and in 9 control women (19%). Seven synonymous and five non-synonymous changes were detected within coding regions. In addition, seven heteroplasmic variations were detected within the non-coding control region. We were also able to show the presence of the variations in eight placental samples from three heteroplasmic women. In three of these cases, the proportion of variant mtDNA was higher in the placenta compared with that in the mother. We conclude that our sensitive methodology revealed a higher frequency of samples with heteroplasmic variations than expected in women with both RM and controls. However, no apparent increased frequency of heteroplasmic mtDNA variations or amounts of aberrant mtDNA was detected in the RM group. In addition, none of the detected variations were previously known to be pathogenic and therefore they are an unlikely cause of miscarriage.
The cause of recurrent miscarriage (RM) can be identified in approximately 50% of cases, whereas in others, unknown genetic factors are actively being sought. As mitochondrial functions, and therefore also the mitochondrial genome [mitochondrial DNA (mtDNA)], have an important role in human development, through ATP production and participation in apoptosis, we aimed to study the role of mtDNA variations in RM. We screened 48 women with RM and 48 age-matched control women for heteroplasmic mitochondrial mutations using denaturing high performance liquid chromatography, a sensitive method that can detect approximately 5% heteroplasmy. As a result, we detected a heteroplasmic mtDNA variation in 13 RM women (27%) and in 9 control women (19%). Seven synonymous and five non-synonymous changes were detected within coding regions. In addition, seven heteroplasmic variations were detected within the non-coding control region. We were also able to show the presence of the variations in eight placental samples from three heteroplasmic women. In three of these cases, the proportion of variant mtDNA was higher in the placenta compared with that in the mother. We conclude that our sensitive methodology revealed a higher frequency of samples with heteroplasmic variations than expected in women with both RM and controls. However, no apparent increased frequency of heteroplasmic mtDNA variations or amounts of aberrant mtDNA was detected in the RM group. In addition, none of the detected variations were previously known to be pathogenic and therefore they are an unlikely cause of miscarriage.