A2 Refereed review article in a scientific journal
Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors
Authors: Conway JRW, Warren SC, Timpson P
Publication year: 2017
Journal: Methods
Journal name in source: Methods (San Diego, Calif.)
Journal acronym: Methods
Volume: 128
First page : 78
Last page: 94
Number of pages: 17
ISSN: 1046-2023
eISSN: 1095-9130
DOI: https://doi.org/10.1016/j.ymeth.2017.04.014
Abstract
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.
Intravital microscopy represents a more physiologically relevant method for assessing therapeutic response. However, the movement into an in vivo setting brings with it several additional considerations, the primary being the context in which drug activity is assessed. Microenvironmental factors, such as hypoxia, pH, fibrosis, immune infiltration and stromal interactions have all been shown to have pronounced effects on drug activity in a more complex setting, which is often lost in simpler two- or three-dimensional assays. Here we present a practical guide for the application of intravital microscopy, looking at the available fluorescent reporters and their respective expression systems and analysis considerations. Moving in vivo, we also discuss the microscopy set up and methods available for overlaying microenvironmental context to the experimental readouts. This enables a smooth transition into applying higher fidelity intravital imaging to improve the drug discovery process.