A1 Refereed original research article in a scientific journal
Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture
Authors: Ahonen TJ, Härkönen PL, Laine J, Rui H, Martikainen PM, Nevalainen MT
Publication year: 1999
Journal: Endocrinology
Journal name in source: Endocrinology
Journal acronym: Endocrinology
Volume: 140
Issue: 11
First page : 5412
Last page: 21
ISSN: 0013-7227
DOI: https://doi.org/10.1210/endo.140.11.7090
Abstract
PRL is one of several polypeptide factors that regulate growth and differentiation of prostate epithelium besides steroid hormones. This hormone may also participate in the development of pathologic changes of the prostate, as evidenced by marked prostate hyperplasia in hyperprolactinemic mice. We have previously demonstrated expression of PRL receptors and androgen-dependent local production of PRL in rat and human prostate epithelium, suggesting the existence of an autocrine loop. We now show that PRL acts as a survival factor for epithelial cells of rat dorsal and lateral prostate but not ventral prostate, using long-term organ cultures as an in vitro model. Culture of prostate explants in androgen-free medium was associated with a transient surge of apoptosis during the first 2-4 days of culture in rat ventral, dorsal, and lateral prostate tissues, as quantified by either nuclear morphology or in situ DNA fragmentation analysis. PRL significantly inhibited apoptosis in androgen-deprived dorsal and lateral prostate cultures, by 40-60%, as determined by the two methods. The present study has established conditions and methodology for analysis of apoptosis in organ cultures of rat prostate and suggests a physiological role for PRL as a survival factor for prostate epithelium.
PRL is one of several polypeptide factors that regulate growth and differentiation of prostate epithelium besides steroid hormones. This hormone may also participate in the development of pathologic changes of the prostate, as evidenced by marked prostate hyperplasia in hyperprolactinemic mice. We have previously demonstrated expression of PRL receptors and androgen-dependent local production of PRL in rat and human prostate epithelium, suggesting the existence of an autocrine loop. We now show that PRL acts as a survival factor for epithelial cells of rat dorsal and lateral prostate but not ventral prostate, using long-term organ cultures as an in vitro model. Culture of prostate explants in androgen-free medium was associated with a transient surge of apoptosis during the first 2-4 days of culture in rat ventral, dorsal, and lateral prostate tissues, as quantified by either nuclear morphology or in situ DNA fragmentation analysis. PRL significantly inhibited apoptosis in androgen-deprived dorsal and lateral prostate cultures, by 40-60%, as determined by the two methods. The present study has established conditions and methodology for analysis of apoptosis in organ cultures of rat prostate and suggests a physiological role for PRL as a survival factor for prostate epithelium.