Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling
: Morgan MR, Hamidi H, Bass MD, Warwood S, Ballestrem C, Humphries MJ
Publisher: CELL PRESS
: 2013
: Developmental Cell
: DEVELOPMENTAL CELL
: DEV CELL
: 24
: 5
: 472
: 485
: 14
: 1534-5807
DOI: https://doi.org/10.1016/j.devcel.2013.01.027
Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of alpha(5)beta(1), and alpha(V)beta(3) integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of alpha(V)beta(3) to the plasma membrane at the expense of alpha(5)beta(1). The resultant elevation in alpha(V)beta(3) engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of alpha(5)beta(1), destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration.