A1 Refereed original research article in a scientific journal
Depletion of the photosystem II core complex in mature tobacco leaves infected by the Flavum strain of tobacco mosaic virus
Authors: Lehto K, Tikkanen M, Hiriart JB, Paakkarinen V, Aro EM
Publisher: AMER PHYTOPATHOLOGICAL SOC
Publication year: 2003
Journal:: Molecular Plant-Microbe Interactions
Journal name in source: MOLECULAR PLANT-MICROBE INTERACTIONS
Journal acronym: MOL PLANT MICROBE IN
Volume: 16
Issue: 12
First page : 1135
Last page: 1144
Number of pages: 10
ISSN: 0894-0282
DOI: https://doi.org/10.1094/MPMI.2003.16.12.1135
Abstract
The flavum strain of Tobacco mosaic virus (TMV) differs from the wild-type (wt) virus by causing strong yellow and green mosaic in the systemically infected developing leaves, yellowing in the fully expanded leaves, and distinct malformations of chloroplasts in both types of infected tissues. Analysis of the thylakoid proteins of flavum strain-infected tobacco leaves indicated that the chlorosis in mature leaves was accompanied by depletion of the entire photosystem 11 (PSII) core complexes and the 33-kDa protein of the oxygen evolving complex. The only change observed in the thylakoid proteins of the corresponding wt TMV-infected leaves was a slight reduction of the alpha and beta subunits of the ATP synthase complex. The coat proteins of different yellowing strains of TMV are known to effectively accumulate inside chloroplasts, but in this work, the viral movement protein also was detected in association with the thylakoid membranes of flavum strain-infected leaves. The mRNAs of different enzymes involved in the chlorophyll biosynthesis pathway were not reduced in the mature chlorotic leaves. These results suggest that the chlorosis was not caused by reduction of pigment biosynthesis, but rather, by reduction of specific proteins of the PSII core complexes and by consequent break-down of the pigments.
The flavum strain of Tobacco mosaic virus (TMV) differs from the wild-type (wt) virus by causing strong yellow and green mosaic in the systemically infected developing leaves, yellowing in the fully expanded leaves, and distinct malformations of chloroplasts in both types of infected tissues. Analysis of the thylakoid proteins of flavum strain-infected tobacco leaves indicated that the chlorosis in mature leaves was accompanied by depletion of the entire photosystem 11 (PSII) core complexes and the 33-kDa protein of the oxygen evolving complex. The only change observed in the thylakoid proteins of the corresponding wt TMV-infected leaves was a slight reduction of the alpha and beta subunits of the ATP synthase complex. The coat proteins of different yellowing strains of TMV are known to effectively accumulate inside chloroplasts, but in this work, the viral movement protein also was detected in association with the thylakoid membranes of flavum strain-infected leaves. The mRNAs of different enzymes involved in the chlorophyll biosynthesis pathway were not reduced in the mature chlorotic leaves. These results suggest that the chlorosis was not caused by reduction of pigment biosynthesis, but rather, by reduction of specific proteins of the PSII core complexes and by consequent break-down of the pigments.