A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
STARSPOTS DUE TO LARGE-SCALE VORTICES IN ROTATING TURBULENT CONVECTION
Tekijät: Kapyla PJ, Mantere MJ, Hackman T
Kustantaja: IOP PUBLISHING LTD
Julkaisuvuosi: 2011
Lehti: Astrophysical Journal
Tietokannassa oleva lehden nimi: ASTROPHYSICAL JOURNAL
Lehden akronyymi: ASTROPHYS J
Artikkelin numero: ARTN 34
Numero sarjassa: 1
Vuosikerta: 742
Numero: 1
Sivujen määrä: 8
ISSN: 0004-637X
DOI: https://doi.org/10.1088/0004-637X/742/1/34
Tiivistelmä
We study the generation of large-scale vortices in rotating turbulent convection by means of Cartesian direct numerical simulations. We find that for sufficiently rapid rotation, cyclonic structures on a scale large in comparison to that of the convective eddies emerge, provided that the fluid Reynolds number exceeds a critical value. For slower rotation, cool cyclonic vortices are preferred, whereas for rapid rotation, warm anti-cyclonic vortices are favored. In some runs in the intermediate regime both types of cyclones coexist for thousands of convective turnover times. The temperature contrast between the vortices and the surrounding atmosphere is of the order of 5%. We relate the simulation results to observations of rapidly rotating late-type stars that are known to exhibit large high-latitude spots from Doppler imaging. In many cases, cool spots are accompanied with spotted regions with temperatures higher than the average. In this paper, we investigate a scenario according to which of the spots observed in the temperature maps could have a non-magnetic origin due to large-scale vortices in the convection zones of the stars.
We study the generation of large-scale vortices in rotating turbulent convection by means of Cartesian direct numerical simulations. We find that for sufficiently rapid rotation, cyclonic structures on a scale large in comparison to that of the convective eddies emerge, provided that the fluid Reynolds number exceeds a critical value. For slower rotation, cool cyclonic vortices are preferred, whereas for rapid rotation, warm anti-cyclonic vortices are favored. In some runs in the intermediate regime both types of cyclones coexist for thousands of convective turnover times. The temperature contrast between the vortices and the surrounding atmosphere is of the order of 5%. We relate the simulation results to observations of rapidly rotating late-type stars that are known to exhibit large high-latitude spots from Doppler imaging. In many cases, cool spots are accompanied with spotted regions with temperatures higher than the average. In this paper, we investigate a scenario according to which of the spots observed in the temperature maps could have a non-magnetic origin due to large-scale vortices in the convection zones of the stars.