A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On signs of Fourier coefficients of cusp forms




TekijätMatomaki K

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2012

JournalMathematical Proceedings of the Cambridge Philosophical Society

Tietokannassa oleva lehden nimiMATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY

Lehden akronyymiMATH PROC CAMBRIDGE

Vuosikerta152

Aloitussivu207

Lopetussivu222

Sivujen määrä16

ISSN0305-0041

DOIhttps://doi.org/10.1017/S030500411100034X


Tiivistelmä
We consider two problems concerning signs of Fourier coefficients of classical modular forms, or equivalently Hecke eigenvalues: first, we give an upper bound for the size of the first sign-change of Hecke eigenvalues in terms of conductor and weight; second, we investigate to what extent the signs of Fourier coefficients determine an unique modular form. In both cases we improve recent results of Kowalski, Lau, Soundararajan and Wu. A part of the paper is also devoted to generalized rearrangement inequalities which are utilized in an alternative treatment of the second question.



Last updated on 2024-26-11 at 16:06