A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On signs of Fourier coefficients of cusp forms




TekijätMatomaki K

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2012

Lehti: Mathematical Proceedings of the Cambridge Philosophical Society

Tietokannassa oleva lehden nimiMATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY

Lehden akronyymiMATH PROC CAMBRIDGE

Vuosikerta152

Aloitussivu207

Lopetussivu222

Sivujen määrä16

ISSN0305-0041

DOIhttps://doi.org/10.1017/S030500411100034X


Tiivistelmä
We consider two problems concerning signs of Fourier coefficients of classical modular forms, or equivalently Hecke eigenvalues: first, we give an upper bound for the size of the first sign-change of Hecke eigenvalues in terms of conductor and weight; second, we investigate to what extent the signs of Fourier coefficients determine an unique modular form. In both cases we improve recent results of Kowalski, Lau, Soundararajan and Wu. A part of the paper is also devoted to generalized rearrangement inequalities which are utilized in an alternative treatment of the second question.



Last updated on 2024-26-11 at 16:06