A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Conditional Ranking on Relational Data




TekijätPahikkala T, Waegeman W, Airola A, Salakoski T, De Baets B

ToimittajaBalcázar J, Bonchi F, Gionis A, Sebag M

Julkaisuvuosi2010

JournalLecture Notes in Computer Science

Kokoomateoksen nimiMachine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II

Tietokannassa oleva lehden nimiMACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II

Lehden akronyymiLECT NOTES ARTIF INT

Vuosikerta6322

Aloitussivu499

Lopetussivu514

Sivujen määrä16

ISSN0302-9743


Tiivistelmä
In domains like bioinformatics, information retrieval and social network analysis, one can find learning tasks where the goal consists of inferring a ranking of objects, conditioned on a particular target object. We present a general kernel framework for learning conditional rankings from various types of relational data, where rankings can be conditioned on unseen data objects. Conditional ranking from symmetric or reciprocal relations can in this framework be treated as two important special cases. Furthermore, we propose an efficient algorithm for conditional ranking by optimizing a squared ranking loss function. Experiments on synthetic and real-world data illustrate that such an approach delivers state-of-the-art performance in terms of predictive power and computational complexity. Moreover, we also show empirically that incorporating domain knowledge in the model about the underlying relations can improve the generalization performance.



Last updated on 2024-26-11 at 21:04