A1 Refereed original research article in a scientific journal
Evaluation of inhibitors for 17beta-hydroxysteroid dehydrogenase type 1 in vivo in immunodeficient mice inoculated with MCF-7 cells stably expressing the recombinant human enzyme
Authors: Husen B, Huhtinen K, Poutanen M, Kangas L, Messinger J, Thole H
Publication year: 2006
Journal: Molecular and Cellular Endocrinology
Journal name in source: Molecular and cellular endocrinology
Journal acronym: Mol Cell Endocrinol
Volume: 248
Issue: 1-2
First page : 109
Last page: 13
Number of pages: 5
ISSN: 0303-7207
DOI: https://doi.org/10.1016/j.mce.2005.11.042
Abstract
17Beta-hydroxysteroid dehydrogenase (17HSD1) is an enzyme activating estrone (E1) to estradiol (E2). In the present study, a mechanistic animal model was set up for evaluating putative inhibitors for the human enzyme in vivo. Estrogen-dependent MCF-7 human breast carcinoma cells were stably transfected with a plasmid expressing human 17HSD1. These cells formed estrogen-dependent tumors in immunodeficient mice. In the optimized model, tumor sizes were decreased in both ovariectomized and intact vehicle-treated mice, whereas they were maintained or slightly increased in mice supplemented 2 weeks with an appropriate dose of the 17HSD1-substrate E1. Tumor sizes in mice treated with 0.1 micromol/kg/d of E1 were reduced by administering 5 micromol/kg/d of different 17HSD1-inhibitors and a 86% reduction in size was detected with the most potent inhibitor. A dose-response relationship in the inhibitory effect of this compound further confirmed the validity of the model for testing the drug candidates in vivo.
17Beta-hydroxysteroid dehydrogenase (17HSD1) is an enzyme activating estrone (E1) to estradiol (E2). In the present study, a mechanistic animal model was set up for evaluating putative inhibitors for the human enzyme in vivo. Estrogen-dependent MCF-7 human breast carcinoma cells were stably transfected with a plasmid expressing human 17HSD1. These cells formed estrogen-dependent tumors in immunodeficient mice. In the optimized model, tumor sizes were decreased in both ovariectomized and intact vehicle-treated mice, whereas they were maintained or slightly increased in mice supplemented 2 weeks with an appropriate dose of the 17HSD1-substrate E1. Tumor sizes in mice treated with 0.1 micromol/kg/d of E1 were reduced by administering 5 micromol/kg/d of different 17HSD1-inhibitors and a 86% reduction in size was detected with the most potent inhibitor. A dose-response relationship in the inhibitory effect of this compound further confirmed the validity of the model for testing the drug candidates in vivo.