A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Inhibition of Streptococcus suis adhesion by dendritic galabiose compounds at low nanomolar concentration
Tekijät: Joosten JA, Loimaranta V, Appeldoorn CC, Haataja S, El Maate FA, Liskamp RM, Finne J, Pieters RJ
Julkaisuvuosi: 2004
Journal: Journal of Medicinal Chemistry
Tietokannassa oleva lehden nimi: Journal of medicinal chemistry
Lehden akronyymi: J Med Chem
Vuosikerta: 47
Numero: 26
Aloitussivu: 6499
Lopetussivu: 508
Sivujen määrä: 10
ISSN: 0022-2623
DOI: https://doi.org/10.1021/jm049476+
Tiivistelmä
A series of mono-, di-, and tetravalent galabiose (Galalpha1-4Gal) compounds were synthesized in good yields by coupling of a general carboxylic acid-bearing sugar building block to dendritic scaffolds based on the 3,5-di-(2-aminoethoxy)benzoic acid branching unit. Furthermore, a poly(amidoamine)- (PAMAM-) based dendritic galabioside was synthesized containing eight galabiose units. All galabiosides were tested in a hemagglutination assay and a surface plasmon resonance (SPR) competition assay in order to establish their potency in the binding to the bacterial Gram-positive pathogen Streptococcus suis. A monovalent galabioside containing a short spacer was used as a reference compound in all the assays. Variations in the scaffold as well as in the spacer arms were introduced to determine their influence on the inhibition. The best inhibitor of hemagglutination was an octavalent galabioside with a minimal inhibitory concentration (MIC) of 0.3 nM, to the best of our knowledge the first example of inhibition of bacterial binding by a soluble carbohydrate at a subnanomolar concentration.
A series of mono-, di-, and tetravalent galabiose (Galalpha1-4Gal) compounds were synthesized in good yields by coupling of a general carboxylic acid-bearing sugar building block to dendritic scaffolds based on the 3,5-di-(2-aminoethoxy)benzoic acid branching unit. Furthermore, a poly(amidoamine)- (PAMAM-) based dendritic galabioside was synthesized containing eight galabiose units. All galabiosides were tested in a hemagglutination assay and a surface plasmon resonance (SPR) competition assay in order to establish their potency in the binding to the bacterial Gram-positive pathogen Streptococcus suis. A monovalent galabioside containing a short spacer was used as a reference compound in all the assays. Variations in the scaffold as well as in the spacer arms were introduced to determine their influence on the inhibition. The best inhibitor of hemagglutination was an octavalent galabioside with a minimal inhibitory concentration (MIC) of 0.3 nM, to the best of our knowledge the first example of inhibition of bacterial binding by a soluble carbohydrate at a subnanomolar concentration.