A1 Refereed original research article in a scientific journal

Muscle fiber type I influences lipid oxidation during low-intensity exercise in moderately active middle-aged men




AuthorsTurpeinen JP, Leppävuori J, Heinonen OJ, Kaila K, Salo J, Lilja M, Kesäniemi YA

Publication year2006

JournalScandinavian Journal of Medicine and Science in Sports

Journal name in sourceScandinavian journal of medicine & science in sports

Journal acronymScand J Med Sci Sports

Volume16

Issue2

First page 134

Last page40

Number of pages7

ISSN0905-7188

DOIhttps://doi.org/10.1111/j.1600-0838.2004.00436.x


Abstract
The simultaneous effects of body composition, cardiorespiratory fitness, physical activity, and muscle fiber characteristics on lipid oxidation at basal state and during exercise were studied in a population-based group (n = 70) of middle-aged men. Body composition, oxygen uptake, and lipid oxidation were determined in a volitional maximal exercise test, physical activity with a questionnaire, muscle fiber characteristics with muscle biopsy, and resting metabolic rate and lipid oxidation at basal state with indirect calorimetry. In regression analysis, type I muscle fibers contributed significantly to lipid oxidation at basal state (r = 0.30, r2 = 0.07, P<0.05) and during low-intensity exercise (r = 0.35, r2 = 0.10, P<0.05). ANOVA revealed 7.7% (P = 0.268) lower lipid oxidation at basal state, 14% (P<0.05) lower lipid oxidation in low-intensity exercise, and 10.5% (P = 0.088) lower lipid oxidation in moderate-intensity exercise in muscle fiber tertile I (type I muscle fiber count 28.8%) compared with muscle fiber tertile III (type I muscle fiber count 71.4%). In conclusion, the muscle fiber distribution contributed significantly to lipid oxidation during low-intensity exercise in moderately active middle-aged men.



Last updated on 2024-26-11 at 13:13