A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
ON THE NORMALITY OF MULTIPLE COVERING CODES
Tekijät: HONKALA I
Kustantaja: ELSEVIER SCIENCE BV
Julkaisuvuosi: 1994
Journal: Discrete Mathematics
Tietokannassa oleva lehden nimi: DISCRETE MATHEMATICS
Lehden akronyymi: DISCRETE MATH
Vuosikerta: 125
Numero: 1-3
Aloitussivu: 229
Lopetussivu: 239
Sivujen määrä: 11
ISSN: 0012-365X
DOI: https://doi.org/10.1016/0012-365X(94)90164-3
Tiivistelmä
A binary code C of length n is called a mu-fold r-covering if every binary word of length n is within Hamming distance r of at least mu codewords of C. The normality and the amalgamated direct sum (ADS) construction of 1-fold coverings have been extensively studied. In this paper we generalize the concepts of subnormality and normality to p-fold coverings and discuss how the ADS construction can be applied to them. In particular, we show that for r = 1, 2 all binary linear mu-fold r-coverings of length at least 2r + 1 and mu-fold normal.
A binary code C of length n is called a mu-fold r-covering if every binary word of length n is within Hamming distance r of at least mu codewords of C. The normality and the amalgamated direct sum (ADS) construction of 1-fold coverings have been extensively studied. In this paper we generalize the concepts of subnormality and normality to p-fold coverings and discuss how the ADS construction can be applied to them. In particular, we show that for r = 1, 2 all binary linear mu-fold r-coverings of length at least 2r + 1 and mu-fold normal.