A1 Refereed original research article in a scientific journal
Clearance of Chlamydia pneumoniae infection in H-2 class I human leucocyte antigen-A2.1 monochain transgenic mice
Authors: Tammiruusu A, Haveri A, Pascolo S, Lahesmaa R, Stevanovic S, Rammensee HG, Sarvas M, Puolakkainen M, Vuola JM
Publication year: 2005
Journal: Scandinavian Journal of Immunology
Journal name in source: Scandinavian journal of immunology
Journal acronym: Scand J Immunol
Volume: 62
Issue: 2
First page : 131
Last page: 9
Number of pages: 9
ISSN: 0300-9475
DOI: https://doi.org/10.1111/j.1365-3083.2005.01645.x(external)
Abstract
CD8+ T cells have been suggested to play an important role in protective immunity against pulmonary Chlamydia pneumoniae infection in mice. Moreover, several classical major histocompatibility complex class I - restricted cytotoxic CD8+ T lymphocytes (CTL) specific for C. pneumoniae- derived peptides have been identified. Here, we studied the outcome of C. pneumoniae infection in human leucocyte antigen (HLA)-A2.1 transgenic mice (HHD mice) that are only able to express a classical human class I molecule (HLA-A2.1). C. pneumoniae infection was self-restricted in HHD mice which were able to develop specific immune responses and a protective immunity against a subsequent rechallenge in a manner comparable to wildtype mice. Furthermore, accumulation of functional and C. pneumoniae-specific T cells to the site of infection was detected after challenge. Antigen processing and HLA-A2.1-dependent presentation was studied by immunizing the HHD mice with chlamydial outer protein N (CopN). Isolation of a peptide-specific CTL line from the CopN-immunized mice suggests that the HLA-A2.1 molecule can support the development of CTL response against a chlamydial protein in mice. These findings suggest that the transgenic mouse model can be used for further characterization of the HLA-A2.1-restricted CD8+ T-cell response during C. pneumoniae infection and for identification of CD8 epitopes from chlamydial antigens.
CD8+ T cells have been suggested to play an important role in protective immunity against pulmonary Chlamydia pneumoniae infection in mice. Moreover, several classical major histocompatibility complex class I - restricted cytotoxic CD8+ T lymphocytes (CTL) specific for C. pneumoniae- derived peptides have been identified. Here, we studied the outcome of C. pneumoniae infection in human leucocyte antigen (HLA)-A2.1 transgenic mice (HHD mice) that are only able to express a classical human class I molecule (HLA-A2.1). C. pneumoniae infection was self-restricted in HHD mice which were able to develop specific immune responses and a protective immunity against a subsequent rechallenge in a manner comparable to wildtype mice. Furthermore, accumulation of functional and C. pneumoniae-specific T cells to the site of infection was detected after challenge. Antigen processing and HLA-A2.1-dependent presentation was studied by immunizing the HHD mice with chlamydial outer protein N (CopN). Isolation of a peptide-specific CTL line from the CopN-immunized mice suggests that the HLA-A2.1 molecule can support the development of CTL response against a chlamydial protein in mice. These findings suggest that the transgenic mouse model can be used for further characterization of the HLA-A2.1-restricted CD8+ T-cell response during C. pneumoniae infection and for identification of CD8 epitopes from chlamydial antigens.