A3 Vertaisarvioitu kirjan tai muun kokoomateoksen osa

On generalized pseudo- and quasiconvexities for nonsmooth functions




TekijätVille-Pekka Eronen, Marko M. Mäkelä, Napsu Karmitsa

ToimittajaRassias T.

KustantajaSpringer International Publishing

Julkaisuvuosi2018

Kokoomateoksen nimiCurrent Research in Nonlinear Analysis. Springer Optimization and Its Applications

Tietokannassa oleva lehden nimiSpringer Optimization and Its Applications

Vuosikerta135

Aloitussivu129

Lopetussivu155

ISBN978-3-319-89799-8

eISBN978-3-319-89800-1

DOIhttps://doi.org/10.1007/978-3-319-89800-1_6


Tiivistelmä

Convexity is the most important and useful concept in mathematical optimization theory. In order to extend the existing results depending on convexity, numerous attempts of generalizing the concept have been published during years. Different types of generalized convexities have proved to be the main tool when constructing optimality conditions, in particular sufficient conditions for optimality. The aim of this paper is to analyze the properties of the generalized pseudo- and quasiconvexities for nondifferentiable locally Lipschitz continuous functions. The treatment is based on the Clarke subdifferentials and generalized directional derivatives.



Last updated on 2024-26-11 at 13:00