A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Representing expansions of bounded distributive lattices with Galois connections in terms of rough sets




TekijätDzik W, Jarvinen J, Kondo M

KustantajaELSEVIER SCIENCE INC

Julkaisuvuosi2014

JournalInternational Journal of Approximate Reasoning

Tietokannassa oleva lehden nimiINTERNATIONAL JOURNAL OF APPROXIMATE REASONING

Lehden akronyymiINT J APPROX REASON

Vuosikerta55

Numero1

Aloitussivu427

Lopetussivu435

Sivujen määrä9

ISSN0888-613X

DOIhttps://doi.org/10.1016/j.ijar.13.07.005


Tiivistelmä
This paper studies expansions of bounded distributive lattices equipped with a Galois connection. We introduce GC-frames and canonical frames for these algebras. The complex algebras of GC-frames are defined in terms of rough set approximation operators. We prove that each bounded distributive lattice with a Galois connection can be embedded into the complex algebra of its canonical frame. We show that for every spatial Heyting algebra L equipped with a Galois connection, there exists a GC-frame such that L is isomorphic to the complex algebra of this frame, and an analogous result holds for weakly atomic Heyting-Brouwer algebras with a Galois connection. In each case of representation, given Galois connections are represented by rough set upper and lower approximations. (C) 2013 Elsevier Inc. All rights reserved.



Last updated on 2024-26-11 at 22:13