A1 Refereed original research article in a scientific journal

Differentiating Drug-related and State-related Effects of Dexmedetomidine and Propofol on the Electroencephalogram




AuthorsScheinin A, Kallionpää RE, Li D, Kallioinen M, Kaisti K, Långsjö J, Maksimow A, Vahlberg T, Valli K, Mashour GA, Revonsuo A, Scheinin H

PublisherLIPPINCOTT WILLIAMS & WILKINS

Publication year2018

JournalAnesthesiology

Journal name in sourceANESTHESIOLOGY

Journal acronymANESTHESIOLOGY

Volume129

Issue1

First page 22

Last page36

Number of pages15

ISSN0003-3022

DOIhttps://doi.org/10.1097/ALN.0000000000002192


Abstract
Background: Differentiating drug-related changes and state-related changes on the electroencephalogram during anesthetic-induced unconsciousness has remained a challenge. To distinguish these, we designed a rigorous experimental protocol with two drugs known to have distinct molecular mechanisms of action. We hypothesized that drug- and state-related changes can be separated.Methods: Forty-seven healthy participants were randomized to receive dexmedetomidine (n = 23) or propofol (n = 24) as target-controlled infusions until loss of responsiveness. Then, an attempt was made to arouse the participant to regain responsiveness while keeping the drug infusion constant. Finally, the concentration was increased 1.5-fold to achieve presumable loss of consciousness. We conducted statistical comparisons between the drugs and different states of consciousness for spectral bandwidths, and observed how drug-induced electroenceph alogram patterns reversed upon awakening. Cross-frequency coupling was also analyzed between slow-wave phase and alpha power.Results: Eighteen (78%) and 10 (42%) subjects were arousable during the constant drug infusion in the dexmedetomidine and propofol groups, respectively (P = 0.011 between the drugs). Corresponding with deepening anesthetic level, slow-wave power increased, and a state-dependent alpha anteriorization was detected with both drugs, especially with propofol. The slow-wave and frontal alpha activities were momentarily disrupted as the subjects regained responsiveness at awakening. Negative phase-amplitude coupling before and during loss of responsiveness frontally and positive coupling during the highest drug concentration posteriorly were observed in the propofol but not in the dexmedetomidine group.Conclusions: Electroencephalogram effects of dexmedetomidine and propofol are strongly drug- and state-dependent. Changes in slow-wave and alpha activity seemed to best detect different states of consciousness.



Last updated on 2024-26-11 at 15:55