Synergetic Pinning Centers in YBa2Cu3OX Films Through a Combination of Ag Nano-Dot Substrate Decoration, Ag/YBCO Quasi-Multilayers, and the Use of BaZrO3-Doped Target
: Mikheenko P, Dang VS, Kechik MMA, Sarkar A, Paturi P, Huhtinen H, Abell JS, Crisan A
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
: 2011
: IEEE Transactions on Applied Superconductivity
: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY
: IEEE T APPL SUPERCON
: 3
: 21
: 3
: 3184
: 3188
: 5
: 1051-8223
DOI: https://doi.org/10.1109/TASC.2010.2086041
We report on an original technique for nanoengineered pinning centers that combine three previously reported approaches: substrate decoration, quasi-multilayers and targets with secondary phase nanoinclusions. We have used a 4% BZO-doped YBCO target, and Ag nanodots, all grown by PLD. Such an approach gave interesting results in terms of pinning landscape, as proved by TEM studies. Angle-dependent measurements of critical current I-c showed that, for smaller fields, the absolute maximum in I-c occur for fields perpendicular to the a-b planes, while at larger fields the absolute maximum in I-c occurs for fields parallel to the a-b planes, in both cases with a clear second, local maxima. Measurements also showed a smooth change in the character of pinning with magnetic field, from the out-of-plane to in-plane-dominant pinning. For the out-of-plane magnetic field, the highest Ic-w (critical current per cm width) obtained so far, at 77.3 K, occurred in a 5.8 mu m Ag nanodots / BZO-doped YBCO trilayer: 782 A/cm-w in self-field, 167 A/cm-w in 1 T and 18 A/cm-w in 3 T.