A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition
Tekijät: Heinonen I, Saltin B, Kemppainen J, Sipila HT, Oikonen V, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y
Julkaisuvuosi: 2011
Journal: AJP - Regulatory, Integrative and Comparative Physiology
Lehden akronyymi: Am J Physiol Heart Circ Physiol
Numero sarjassa: 4
Vuosikerta: 300
Numero: 4
Aloitussivu: H1510
Lopetussivu: H1517
Sivujen määrä: 8
ISSN: 0363-6135
DOI: https://doi.org/10.1152/ajpheart.00996.2010
Tiivistelmä
The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake, specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed three 5-min bouts of light knee-extensor exercise. Skeletal muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with H(2)O(15) and (15)O(2) during: 1) control conditions; 2) nitric oxide synthase (NOS) inhibition by arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA), and 3) combined NOS and cyclooxygenase (COX) inhibition by arterial infusion of L-NMMA and indomethacin. At rest, inhibition of NOS alone and in combination with indomethacin reduced (P < 0.05) muscle blood flow. NOS inhibition increased (P < 0.05) limb oxygen extraction fraction (OEF) more than the reduction in muscle blood flow, resulting in an approximately 20% increase (P < 0.05) in resting muscle oxygen consumption. During exercise, muscle blood flow and oxygen uptake were not altered with NOS inhibition, whereas muscle OEF was increased (P < 0.05). NOS and COX inhibition reduced (P < 0.05) blood flow in working quadriceps femoris muscle by 13%, whereas muscle OEF and oxygen uptake were enhanced by 51 and 30%, respectively. In conclusion, by specifically measuring blood flow and oxygen uptake by the use of PET instead of whole limb measurements, the present study shows for the first time in humans that inhibition of NO formation enhances resting muscle oxygen uptake and that combined inhibition of NOS and COX during exercise increases muscle oxygen uptake
The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake, specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed three 5-min bouts of light knee-extensor exercise. Skeletal muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with H(2)O(15) and (15)O(2) during: 1) control conditions; 2) nitric oxide synthase (NOS) inhibition by arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA), and 3) combined NOS and cyclooxygenase (COX) inhibition by arterial infusion of L-NMMA and indomethacin. At rest, inhibition of NOS alone and in combination with indomethacin reduced (P < 0.05) muscle blood flow. NOS inhibition increased (P < 0.05) limb oxygen extraction fraction (OEF) more than the reduction in muscle blood flow, resulting in an approximately 20% increase (P < 0.05) in resting muscle oxygen consumption. During exercise, muscle blood flow and oxygen uptake were not altered with NOS inhibition, whereas muscle OEF was increased (P < 0.05). NOS and COX inhibition reduced (P < 0.05) blood flow in working quadriceps femoris muscle by 13%, whereas muscle OEF and oxygen uptake were enhanced by 51 and 30%, respectively. In conclusion, by specifically measuring blood flow and oxygen uptake by the use of PET instead of whole limb measurements, the present study shows for the first time in humans that inhibition of NO formation enhances resting muscle oxygen uptake and that combined inhibition of NOS and COX during exercise increases muscle oxygen uptake