A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Undecidability bounds for integer matrices using claus instances




TekijätHalava V, Harju T, Hirvensalo M

KustantajaWORLD SCIENTIFIC PUBL CO PTE LTD

Julkaisuvuosi2007

Lehti:International Journal of Foundations of Computer Science

Tietokannassa oleva lehden nimiINTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE

Lehden akronyymiINT J FOUND COMPUT S

Vuosikerta18

Numero5

Aloitussivu931

Lopetussivu948

Sivujen määrä18

ISSN0129-0541

DOIhttps://doi.org/10.1142/S0129054107005066


Tiivistelmä
There are several known undecidable problems for 3 x 3 integer matrices the proof of which use a reduction from the Post Correspondence Problem (PCP). We establish new lower bounds in the number of matrices for the mortality, zero in the left upper corner, vector reachability, matrix reachability, scalar reachability and freeness problems. Also, we give a short proof for a strengthened result due to Bell and Potapov stating that the membership problem is undecidable for finitely generated matrix semigroups R subset of Z(4x4) whether or not KI4 is an element of R for any given vertical bar k vertical bar > 1. These bounds axe obtained by using the Claus instances of the PCP.


Research Areas



Last updated on 2025-14-10 at 09:58