A1 Refereed original research article in a scientific journal

About Duval's conjecture




AuthorsHarju T, Nowotka D

Publication year2003

Journal:Lecture Notes in Computer Science

Journal name in sourceDEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS

Journal acronymLECT NOTES COMPUT SC

Volume2710

First page 316

Last page324

Number of pages9

ISBN3-540-40434-1

ISSN0302-9743


Abstract
A word is called unbordered if it has no proper prefix which is also a suffix of that word. Let mu(w) denote the length of the longest unbordered factor of a word w. Let a word where the longest unbordered prefix equal to mu(w) be called Duval extension. A Duval extension is called trivial, if its longest unbordered factor is of the length of the period of that Duval extension. In 1982 it was shown by Duval that every Duval extension w longer than 3mu(w)-4 is trivial. We improve that bound to 5mu(w)/2-1 in this paper, and with that, move closer to the bound 2mu(w) conjectured by Duval. Our proof also contains a natural application of the Critical Factorization Theorem.


Research Areas



Last updated on 2025-14-10 at 09:38