An undecidability result concerning periodic morphisms
: Halava V, Harju T
: Werner Kuich, Grzegorz Rozenberg, Arto Salomaa
: 2002
: Lecture Notes in Computer Science
: Developments in Language Theory
: DEVELOPMENTS IN LANGUAGE THEORY
: LECT NOTES COMPUT SC
: Developments in Language Theory International Conference
: 5
: 2295
: 304
: 310
: 7
: 978-3-540-43453-5
: 0302-9743
The following universe problem for the equality sets is shown to be undecidable: given a weak coding h, and two morphisms g(1), g(2), where g(2) is periodic, determine whether or not h(E-G (g(1), g(2))) = Sigma(+), where E-G (g(1), g(2)) consists of the solutions w to the equation g(1) (w) = #g(2) (w) for a fixed letter #. The problem is trivially decidable, if instead of E-G (g(1), g(2)) the equality set E(g(1), g(2)) (without a marker symbol #) is chosen.